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Summary

Material parameters (inert and fatigue) are obtained from
naturally flawed specimens. If the inert strength parameters
characterizing the two-parameter Weibull cumulative distribu-
tion function are known, the fatigue parameters for the power,
Paris, and Walker subcritical crack growth equations can be
obtained from the appropriate rupture data of standard uniaxial
test specimens loaded in static, dynamic, or cyclic fatigue.
Equations are developed for fatigue parameter analysis using
the least-squares best-fit and/or the maximum likelihood esti-
mation method. When the inert parameters are unknown and
only subcritical crack growth rupture data are available, the
material parameters defining the specimen's cumulative distri-
bution function are obtained via the median deviation method.
Example problems are included.

Introduction

The objective of this report is to introduce a number of
techniques to obtain the necessary material parameters for a time-
dependent reliability analysis of monolithic structural ceramic
components. These parameters (inert and fatigue) are evaluated

*Distinguished Research Assoicate
†NASA Resident Research Associate at Lewis Research Center.

‡Summer Faculty Fellow at Lewis Research Center.

from fast-fracture and time-dependent stress rupture data of
uniaxially loaded test specimens. Ideally, the data are obtained
under conditions representative of the service environment.

Static, dynamic, and/or cyclic fatigue loading result in a
phenomenon called subcritical crack growth (SCG). Static
fatigue is defined as the application of a constant load over a
period of time. Dynamic fatigue is the application of a constant
stress rate over a period of time, and cyclic fatigue is the
repeated application of a loading sequence. Under tensile
loading, SCG initiates at existing flaws and continues until a
flaw reaches a critical length, causing catastrophic failure.
Various laws such as the power (ref. 1), Paris (ref. 2), and
Walker (ref. 3) are used to describe SCG. These laws are
usually obtained from mode I laboratory tests of an introduced
crack of known geometry. An uncertainty is involved in relat-
ing these results to a body containing a random distribution and
orientation of inherent flaws of varied geometry and their
interaction under mixed-mode loading. Parameters of the vari-
ous SCG flaws, derived from naturally flawed test specimens,
tend to compensate for these uncertainties, leading to better
agreement between prediction and experimental data.

For the power, Paris, and Walker laws, analytical methods
are derived to estimate the material parameters for volume
flaws. Analogous equations are obtained for the condition
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where surface flaws are dominant. Using the least-squares
best-fit (LSBF), the median deviation (MD), and the maximum
likelihood estimation (MLE) methods, equations are devel-
oped for material parameter estimation. The Theoretical Devel-
opment section consists of a brief development of background
equations for each of the SCG laws, followed by descriptive
techniques for estimating the parameters.

Two example problems are given in the section Experi-
mental Applications. Data from soda lime glass ring-on-
ring and sintered alpha silicon carbide (SASC) C-ring and
O-ring specimens (refs. 4 and 5 and Nemeth, N.N. et al.:
CARES/LIFE Ceramic Analysis and Reliability Evaluation
of Structures Life Prediction Program. NASA Lewis Re-
search Center, unpublished data, 1993.) are used to illus-
trate the application of some of the methods derived herein.

Symbols

A material fatigue parameter (power law)

Ae effective area (fast fracture)

Aef effective area (subcritical crack growth)

Ao material fatigue parameter (Paris law)

a crack half-length

B fatigue constant

C function dependent on model and value of probability of
failure

exp Naperian base

g g-factor for cyclic load conversion (eq. (8))

H step function

h ring-on-ring specimen thickness

K stress intensity factor

<n natural logarithm

m Weibull modulus

N fatigue exponent

n number of cycles

P applied load

Pf probability of failure

Q Walker law fatigue parameter

R ratio of minimum to maximum effective stress in a
loading cycle

Ri inner specimen radius

Ro outer specimen radius

Rs diagonal half-length (fig. 1)

r ring-on-ring radial location

S variate in equation (70)

T time interval for one load cycle

t time

V volume

Ve effective volume (fast fracture)

Vef effective volume (subcritical crack growth)

x,y,z Cartesian coordinate locations

Y geometric crack shape factor

Z parameter assoicated with MLE (eq. (70))

Γ gamma function

ν Poisson's ratio

σ stress

σ̇ stress rate

σο Weibull scale factor

σθ characteristic strength

Ψ represents location (x,y,z) of equivalent stress within the
body

Ψ0 represents location (x0,y0,z0) of maximum tensile
principal stress within the body

Subscripts:

c cyclic
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f fracture

I mode I

Ic mode I critical

Ieq mode I equivalent

i,j subscripts denote ith (jth) datum in data set

< step function time switch

max maximum

min minimum

r radial

s surface

T transformed

tan tangential

u uniaxial

ν volume

w Weibull

0.5 denotes median value

1 maximum principal

Theoretical Development

The lifetime reliability of a structural ceramic component
depends on the material's inert parameters (m, σo) and the
fatigue parameters (N, B) which characterize subcritical crack
growth. Material parameter estimation methods are developed
for the power, Paris, and Walker equations. The power law
expresses the crack growth increment per unit time, whereas
the Paris and Walker models express the crack growth incre-
ment per cycle. The analytical relationships in this section have
been derived for volume flaws; analogous relations are obtained
for the case where surface flaws dominate.

Power Law

Analysis.—Dynamic or cyclic fatigue stress in conjunction
with the power law is transformed into an equivalent static
stress through the use of g-factors. Implicit in this conversion
is the assumption that over the same time interval the equivalent

static stress will cause the same crack growth as the dynamic or
cyclic stress (ref. 6).

For the uniaxial case, the crack growth is expressed as
d da/ t AKI

N= .  For volume flaws the general case is

d

d

a t

t
A K tIeq

Nv( , )
( , ) ( )

Ψ Ψ= 1

where a is the half-crack length; Ψ is the location point; t is the
time; A is the material fatigue parameter; KIeq is the mode I
equivalent stress intensity factor; and Nv is the volume fatigue
exponent.

The term KIeq is defined as

K t t Y a tIeq Ieq( , ) ( , ) ( , ) ( )Ψ σ Ψ Ψ= 2

where σIeq is the mode I equivalent stress and Y is the geometric
crack shape parameter.

Rearranging equation (2) and solving for the crack half-
length yields

a t
K

Y
tIc

Ieq,t( , ) ( , ) ( )Ψ σ Ψ= 





−
2

2 3

where KIc is the mode I critical stress intensity factor and σIeq,t
is the equivalent stress at time t. From equations (1) to (3), the
equivalent stress distribution at a failure time tf is transformed
to its inert effective stress distribution σIeq,0 (Ψ) at time t = 0
(refs. 7 and 8):

  

σ Ψ
σ Ψ

σ ΨIeq
Ieq
Nv

t f

Ieq
Nv

f

Nv
t t

B
t,

( )

( )
,

, ( )0
2

2

4=
( )

+ ( )
















∫ −

−
d

1/

0

where σIeq,0 (Ψ,t) is the same as σIeq(Ψ,t) and the fatigue
constant B is

B
A Y K NIc

N
v

v
=

−( )−
2

2
5

2 2 ( )

When the initial flaw size is much smaller than the flaw size at
failure and the fatigue parameter Nv is large, as is the case for
ceramics, equation (4) reduces to
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σ Ψ
σ Ψ

Ieq
Ieq
Nv

t f
Nv

t t

B,

( )

( )
,

( )0
0

1 2

6=
( )















∫
−

d
/

Next follows an analysis of static and cyclic fatigue. Satisfying
the assumption that the equivalent static stress distribution
σIeq(Ψ) produces the same amount of crack growth as the
periodic cyclic stress distribution over one cycle’s time interval
T results in

σ Ψ Ψ σ ΨIeq
N

Ieqcg v( ) ( ) ( ) ( )
max

= 1/
7

where the g-factor is defined as

g

t
t

T

Ieqc

Ieqc

Nv
T

( )

,

( )maxΨ

σ Ψ
σ Ψ

=

( )
( )









































∫ d
0
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The g-factor for static and dynamic fatigue are available in
closed form. Numerical integration is required for most load
conditions. A summary of g-factors for various loading func-
tions is given in table I.

The fatigue parameters N and B are calculated from rupture
test data obtained from uniaxially loaded specimens. For a

given applied constant static stress level j, σ ΨIeqc
jmax

( )0[ ] =

σ Ψfj 0( ) and the time to failure of the ith specimen is tfji . For
static or cyclic fatigue, the g-factor will appear in the compu-
tation of the maximum equivalent static stress at location Ψ0.
The data (σfj(Ψ0 ), tfji) are ranked for each stress level j, where
j varies from 1 to q, and i varies from 1 to p. For the ith specimen
of rank r, using Benard's formula (ref. 9), Pfji = (r – 0.3)/
(p + 0.4).

For the specimen uniaxial Weibull model, the characteristic
strength σθν is dependent on the specimen geometry. The
probability of failure Pfji is expressed as

P tfji fji
ji

v

mv

( ) exp ( ),= − −
( )






















1 91 0 0σ Ψ

σθ

where mv is the Weibull modulus, and Ψ0 is the location of the
maximum principal stress at failure.

Hence,

σ Ψ
σ Ψ Ψ

σ Ψ Ψ

1 0 0
0 0

1 2

0 0

1 2
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ji
j
Nv

fji

uv

Nv

fj
Nv

fji

uv

Nv

g t

B

g t

B

,

( )

( )

( )

( ) =
( ) ( )













=
( ) ( )













−

−

l

/

/

Subscript 1 denotes the maximum principal tensile stress at
fracture. Equation (10) with σfj equal to σ1j represents the
transformation of the maximum principal static stress
σ Ψ Ψf atj

Nv
fjig t( ) ( )

/
0

1
0 to the inert stress σ Ψ1 0 0ji, t0( ) .at =

For the uniaxial Weibull model, the scale factor σov is a
material property and the probability of failure is expressed as

P t Vfji fji
ov

mv

ji
mv

v
( ) exp ( ),= − −







( )


























∫1

1
111 0σ

σ Ψ d

with the integration over the volume V and

σ Ψ
σ Ψ Ψ

σ Ψ Ψ

1 0

2

2
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ji
j
N

fji

wv

N

fj
N

fji

wv

N

v
v

v
v

g t

B

g t

B

,

( )

( )

( )

( ) =
( ) ( )













=
( ) ( )













−

−

l

1/

1/

Equation (12) represents the transformation of the equivalent
static stress distribution at time tfji  to an inert stress distribution
σ Ψ1 0 0ji, t( ) .at =

For the compatability of failure probabilities, a basic require-
ment is that all models produce the same probability of failure
for a uniaxial stress state as that obtained for the specimen
uniaxial Weibull model. To satisfy this requirement, the value
of Nv remains invariant whereas the fatigue parameter B will
depend on the probability-of-failure model. All failure model
dependent fatigue parameters (such as Buv, the specimen uniaxial
Weibull model) are directly proportional to B which is given by
equation (5). For large values of Nv, all failure model dependent
fatigue parameters approach a common value.



5

  s

            
sIeqc

t

Tf

  s

t

Tf

t

  s
t1

  s1

  
s11

t11

T

  s

  s1

  
s11

t

TT

  s

t

  
s11

  s1

TT

  s

t

  s1

TT

TABLE I.—g-FACTORS FOR VARIOUS LOADING FUNCTIONSa

[H(t,t<) = 1 for t ≥ t< ; H(t,t<) = 0 for t < t< ; bσ11 ≥ 0.]

1
2

2

1 11 1 11

10T

t

T t
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+ + −( ) 























∫
sin

d
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Equating the risk of rupture of the specimen uniaxial Weibull
model to that of the uniaxial Weibull model results in

B

B

V
V

V

wv

uv

m N

ov

v

m
fj

fjv

m N N
ef

e

v v

v v v v








=
































=

−

− −

∫

/( )

( ) /( )
( )

( )

2

0

2
σ
σ

σ Ψ
σ Ψθ

d

where Ve is the effective volume for no subcritical crack
growth, and Vef  is the effective volume when subcritical crack
growth occurs:

Ve
ov

v

mv

=










σ
σθ

and

V Vef
fj

fj

mv Nv Nv

v
=











−

∫
σ Ψ
σ Ψ

( )

( )

( ) /( )

0

2

d

Using the above equations to eliminate σθν and Buν from the
specimen uniaxial Weibull model yields

P t
g t V

B
fji fji
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fji ef
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/ ˜ ˜
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where ˜ /( ).m m Nv v v= − 2  Thus,

    

t
B

V

P
g

Cfji
wv ov

Nv

ef

fji

mv fj
Nv

ji fj
Nv=

( )
















( )

































( ) = ( )
−

−

− −σ

Ψ

σ Ψ σ Ψ
2

1

1

0

0 0

1

14

ln −

/ ˜

( )

where Cji  varies with the probability of failure Pfji . Taking the
natural logarithm of equation (13) and manipulating it algebra-
ically yields
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1

1

0
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1

2σ Ψ
Ψ

σ

/ ˜

( )

This equation is the basis for a least-squares best-fit evaluation
of the fatigue parameters Nv and Bwv using all the available
rupture data. If the same risk of rupture is maintained, from
equation (13), all fatigue rupture data (σfj(Ψ0), tfji) can be

transformed to an equivalent data set (σT(Ψ0), tTji) for a given
value of Nv:

t tTji
fj

T

Nv

fji=
( )
( )













σ Ψ

σ Ψ
0

0

16( )

σ Ψ σ ΨT fj( ) min ( )0 0= [ ]
Subscript T denotes the transformed data. The probability of
failure for this case is

  

P t
t

B

g V

fji Tji
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wv ov
Nv

T
Nv

ef
mv

mv

( ) exp ( )

˜

˜
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
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
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
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
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
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
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




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
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
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
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−
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Parameter estimation.—The following are techniques which
may be used to determine the parameters for static and cyclic
and then for dynamic fatigue using the power law formulation
just described.

Method I–Least-squares best fit using median values: The
inert material parameters mv and  σov are known. For the median
values, and taking the natural logarithm, equation (14) yields

  
l l ln n n( ) ( ). . .t N Cfji v fj ji0 5 0 0 5 0 5= − ( )[ ] +σ Ψ

where subscript 0.5, denotes the median value. Since Pfji  = 0.5,
intercept (Cji)0.5 is a constant. Substituting the set of median
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values (σfj(Ψ0), tfji)0.5 into the above equation permits solving
for slope Nv and intercept (Cji)0.5. From the known value of Nv,
g(Ψ0) and Vef can be computed. From the value of the inter-
cept, Bwv is obtained.

Method II–Maximum likelihood estimation using median
values: The inert material parameters are known. Based on the
least-squares best-fit result for Nv as a starting value (Nassumed),
the median values (σfj(Ψ0), tfji)0.5 are transformed via equa-
tion (16) to the data set (σT(Ψ0), tTji)0.5. The maximum likeli-
hood estimation method is applied to equation (17) with tTji as
the variate to obtain the value m̃v . From this value, Ncomputed
can be determined and compared with Nassumed. When both
values are within some specified tolerance, the solution is
obtained. If not, the two values are averaged and the process is
repeated. After convergence, the g-factor, Vef, and then Bwv are
evaluated.

Method III–Least-squares best fit using all fatigue rupture
data: The inert material parameters are known. The data are
ranked for each value of σfj(Ψ0) in accordance with the magni-
tude of tfji  to obtain the data set (σfj(Ψ0), tfji , Pfji ).
Substituting these values into equation (15) permits solving for
Nv and the intercept. The value of Nv is used to evaluate the
g-factor and Vef , and the intercept is used to solve for Bwv.

Method IV–Maximum likelihood estimation using all fatigue
rupture data: The inert material parameters are known. A value
of Nv is assumed based on the least-squares best-fit regression
analysis. All the data are transformed via equation (16). The
maximum likelihood estimation method is applied to equa-
tion (17) with tTji as the variate to solve for m̃v . The value of Nv
is computed and compared with the assumed value. These two
values are averaged and the process is repeated until the
assumed value is within a specified tolerance of the computed
value. When this tolerance is achieved, g(Ψ0), Vef , and Bwv are
evaluated.

Method V–Least-squares best fit to evaluate unsubscripted
B: The value of B in equation (6) is not model dependent and can
be obtained by using both inert and fatigue rupture data.
Equation (6) for static and cyclic fatigue reduces to

σ Ψ
σ Ψ Ψ

lji
Nv fj

Nv
fjig t

B, ( )0
2

0
0 0 18

− ( ) =
( ) ( )

where σ1ji,0(Ψ0) is the inert strength (maximum principal stress
at fracture) obtained from the rupture data associated with
(σfj(Ψ0), tfji ) by equivalence of rank (Pfji). From equation (18)
after some algebraic manipulation,

  

l l l l

l

n n n n

n

t N

B

g

fji ji v ji fj+ = −[ ]

+












2

19

1 0 0 1 0 0 0

0

σ Ψ σ Ψ σ Ψ

Ψ

, ,( ) ( ) ( )

( )
( )

For the set of data (σfj(Ψ0), tfji , Pfji), the equivalence of failure
probability allows determining (σ1ji,0, Pfji). These values are
substituted in the above equation to solve for Nv and the
intercept. The g-factor is evaluated using the value of Nv, and
B is obtained from the intercept. A one-to-one correspondence
of the inert data to the fatigue data is assumed.

Method VI–Median deviation: The median deviation
(ref. 10) method is a measure of the spread of the data about the
median value. This approach is used when the inert parameters
are unknown and only time-dependent fatigue rupture data are
available. From the minimization of the median deviation, the
material parameters mv, Nv, and Bwv σ ov

Nv −2  are evaluated. For
an assumed value of Nv, the data (σfj(Ψ0), tfji) are transformed
via equation (16) into (σT(Ψ0), tTji). From the transformed data,
the median deviation for the total number of data points qp is

    

MD
pq

t t

m pq

P

Tji T
i

p

j

q

v

fji

i

p

j

q

= −

−( )
−( )

















==

−

−
==

∑∑

∑∑

1

1 1

1 5
20

0 5
11

1

1
11

l l

l
l

l

n n

n
n

n

.

˜ .
( )

0

The process is iterative, covering an appropriate range of Nv
values. The value of Nv associated with the minimum value of

  

MD
pq

t tTji T
i

p

j

q

min .
= −

==
∑∑1

0 5
11

l ln n

is the solution. Once the value of Nv has been determined, the
Weibull modulus can be obtained for known Pfji  since
m̃v  = mv/(Nv – 2); hence

  

m
N

MD pq

P
v

v fji

i

p

j

q

=
−

=
−( )
−( )

















−

−
==
∑∑2 1 1

1 0 5
21

1

1
11min .

( )l
l

l
n

n

n

After computing g(Ψ0) and Vef, the value of (Bwvσ ov
Nv −2 ) is

then estimated from the median value [σΤ (Ψ0), tTji]0.5 via
equation (17).

Dynamic fatigue.—For dynamic fatigue tests at a constant
stress rate ̇σ j , the time to failure of the ith specimen is tfji  or,
equivalently, the maximum stress at failure associated with σ̇ j
is σfji (Ψ0). Replacing σfj (Ψ0) in equation (13) with σfji (Ψ0),
tfji  with σfji  (Ψ0)/ σ̇ j (Ψ0), and g(Ψ0) with 1/(Nv + 1) yields
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P
V

B N
fji

fji
Nv

ef
mv

j wv v ov
Nv

mv
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
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
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1

22

1
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0
2exp
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Since σ̇ j  is the independent variable, equation (22) becomes

  

l l

l

l

l l
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1

1
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At location Ψ0, since σfji = σ̇ j tfji, where tfji is the time to
failure of the ith specimen under stress rate σ̇ j , another form of
equation (22) is

  

2
1

1

1

1
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Similar to equation (14), equation (22) can be expressed as

σ Ψ σ Ψfji j
Nv

ji
NvC( ) ˙ ( )

( ) ( )
0

1 1
0

1 1= + +/ /

Maintaining the same risk of rupture for the specimen uniaxial
Weibull model, all σfji(Ψ0), σ̇ j (Ψ0) are transformed into
σTji (Ψ0), σ̇ T

(Ψ0) via

˙ ( ) min ˙ ( )

( )

( )
˙ ( )
˙ ( )

( )

)

σ Ψ σ Ψ

σ Ψ
σ Ψ
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This form is used in conjunction with the MLE method with

σ Tji
Nv +1

 as the variate.
For the median deviation method, transforming the data via

equation (24b) results in the following:
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Parameter estimation methods I to VI are now applicable to the
dynamic fatigue case.

Paris Law

Cyclic effects on slow crack growth are dependent on the
duration and the number of cycles. Modeling for cyclic effects
is based on phenomenological critera (Paris law, Walker law)
traditionally used for metal fatigue. As shown in a previous
section, the Power law expresses the crack growth increment
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per unit time. This section will describe the Paris law formulation,
which expresses the crack growth increment per cycle.

Analysis.—The Paris law formulation describes the cyclic
loading by incorporating in the analysis the difference between
the maximum and minimum stress intensities. The rate equa-
tion is given as

d

d

a n

n
A K nIeq

N( , )
( , ) ( )

Ψ ∆ Ψ= o 27

where Ao is a material fatigue parameter,

a n
K

Y
nIc

Ieqc,n( , ) ( , ) ( )Ψ σ Ψ= 
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


−
2

2 28

and

∆ Ψ σ Ψ σ Ψ Ψ

σ Ψ Ψ Ψ

K n n n Y a n

n R n Y a n

Ieq Ieqc Ieqc

Ieqc

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( )

max min

max

= −[ ]
= −[ ]1 29

where R is the ratio of the minimum to maximum equivalent
stress in a loading cycle,

R n
Ieqc

Ieqc

( , ) min

max

Ψ
σ

σ
=

and n is the number of cycles. From equations (27) to (29), the
transformed stress becomes
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For a periodic cyclic stress, R(Ψ,n) and σIeqcmax
 (Ψ,n) are

independent of n; hence,

σ Ψ
σ Ψ Ψ

σ Ψ

Ieqc
Ieqc
N N

f

Ieqc
N

f

N

v v

v

v

R n

B

n

,

( )

( )
( )

, ( )

max

max

0

2

2

1

32

=
( ) −[ ]






+ ( )










−

−1/

For σ Ψ ΨIeqc
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( )[ ( )]2 1 1−{ } >> , equation (32) is

approximated as
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Equation (33) represents the transformation of the stress distri-
bution at n = nf to its inert stress distribution at n = 0.

The fatigue parameters Nv and B are obtained from cyclic
rupture data tests on uniaxially loaded speciments. For a given
value of j, associated with stress level σfj(Ψ0) = [σIeqcmax

 (Ψ0)]j,
where Ψ0 is the location of the maximum cyclic stress, the
number of cycles to failure for the ith specimen is nfji. The data
{σfj(Ψ0) [1 – Rj(Ψ0)], nfji} are ranked for each value of j, where
j varies from 1 to q and i varies from 1 to p. For the ith specimen
of rank r subjected to stress level j, the failure probability is

P
r

pfji = −
+

0 3

0 4

.

.

Maintaining the same risk of rupture for the specimen uniaxial
Weibull model and the uniaxial Weibull model results in
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and

n C Rfji ji fj j

Nv= ( ) − ( )[ ]{ }−
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From equation (35)
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with σfj(Ψ0) [1 – Rj(Ψ0)] the independent variable and nfji  the
dependent variable. Maintaining the same risk of rupture for all
data, {σfj(Ψ0) [1 – Rj(Ψ0)], nfji} are transformed into {σT(Ψ0)
[1 – RT(Ψ0)], nTji},

where
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and substituting into equation (34),
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Parameter estimation.—The following are techniques which
may be used to determine the parameters for cyclic fatigue using
the Paris law formulation just described.

Method I–Least-squares best fit using median values: The inert
parameters mv and σov are known. For the median values,
equation (38) becomes

  
l l ln n nn C N Rfji ji v fi j( ) = ( ) − −[ ]{ }0 5 0 5 0 0

0 5
1

. . .
( ) ( )σ Ψ Ψ

where the subscript 0.5 denotes the median value. Since
Pfji = 0.5, the intercept øn(Cji)0.5 is a constant. Substituting the
set of median values into the above equation determines Nv and
(Cji)0.5; Vef is computed and Bwv is found from the value of the
intercept.

Method II–Maximum likelihood estimation using median
values: The inert parameters are known. An initial value of Nv is
assumed based on a least-squares best-fit regression analysis;
{σfj(Ψ0) [1 – Rj(Ψ0)], nfji} 0.5  are transformed via equation (40)
to the data set {σT(Ψ0) [1 – RT(Ψ0)], nTji} 0.5. The maximum
likelihood estimation method is applied to equation (41) with
(nTji)0.5 as the variate; then the value of m̃v  is obtained. From
this value, Nassumed is compared with Ncomputed. The process is
iterative. When both values are within some specified tolerance,
the solution for Nv has been found. After convergence, Vef and
Bwv are evaluated.

Method III–Least-squares best fit using all fatigue rupture
data: The inert parameters are known. The data for each value
of σfj (Ψ0) [1 – Rj (Ψ0)] are ranked in accordance with the
magnitude of nfji to obtain the data set {σfj (Ψ0) [1 – Rj (Ψ0)],
nfji,Pfji}. These values are substituted in equation (39) to evalu-
ate Nv and the intercept; Vef  is determined and from the value of
the intercept, Bwv is obtained.
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Method IV–Maximum likelihood estimation using all
fatigue rupture data: The inert parameters are known. A value
Nv = Nassumed is assumed based on the least-squares best-fit
results. The data are transformed through equation (40) to data
set {σT(Ψ0) [1 – RT(Ψ0)], nTji}. The maximum likelihood
estimation method is applied to equation (41) with nTji as the
variate to solve for ̃mv . The value of Nv is computed and then
compared with the assumed value. These two values are aver-
aged and the process is repeated until the assumed value is
within some specified tolerance of the computed value; Vef and
Bwv are evaluated.

Method V–Least-squares best fit to evaluate unsubscripted B:
The value of B, equation (31), that is not model dependent can
be obtained using all the rupture data (inert plus fatigue). Intro-
ducing the subscripts i and j into equation (33) with reference to
specimen number and stress level, respectively, yields
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42
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where σ1ji,0 (Ψ0) is the inert maximum principal stress associ-
ated with nfji by the equivalence of rank. Thus, the inert stress
σ1ji,0 is matched with {σfj (Ψ0) [1 – Rj (Ψ0)], nfji}. The above
equation is used to solve for Nv and from the intercept, evaluateB.

Method VI–Median deviation: The median deviation meas-
ures the spread of the data about the median value. The median
deviation method is used when the inert parameters are unknown
and only subcritical crack growth rupture data are
available. From the minimization of the median deviation,
the material parameters mv, Nv, and the product Bwvσ ov

Nv −2

are evaluated. For an assumed value of Nv, the data {σfj (Ψ0)
[1 – Rj (Ψ0)], nfji}  are transformed via equation (40) into
{σT(Ψ0) [1 – RT(Ψ0)], nTji}. From the transformed data, the
median deviation for the total number of data points qp is
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The process is iterative, covering an appropriate range of Nv
values. The value of Nv associated with the minimum value of
the median deviation MDmin is the solution. With Nv and Pfji
known,
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The value of Bwvσ ov
Nv −2  is then estimated from the median

value {σT (Ψ0) [1 – RT (Ψ0)], nTji} 0.5 via equation (41).

Walker Law

Analysis.—As illustrated in the previous section, the Paris
law formulation describes the cyclic loading by incorporating in
the analysis the difference between the maximum and minimum
stress intensities. However, this approach does not take into
account the effect of the stress ratio R (i.e., the ratio of the
minimum to maximum cyclic stress). For metals, it was ob-
served that the higher the positive value of R, the greater the
amount of crack growth. To incorporate the effect of stress ratio
on crack growth, the Walker formulation is used. The Walker
law rate equation is given as

d

d
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where KIeq = KIeqcmax
 and Qv is the Walker material fatigue

parameter. When Qv equals Nv, the Walker law reduces to the

Paris law:
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where n is the number of cycles. From equations (46) to (48), we
obtain the transformed equivalent stress distribution at n = nf
to its equivalent inert stress distribution at n = 0:
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The fatigue parameters Nv, Qv, and B are obtained from cyclic
rupture data on uniaxially loaded specimens. For a given value
of j, associated with σfj (Ψ0) = [σIeqcmax

(Ψ0)]j, the maximum
principal stress in the specimen, the number of cycles to failure
of the ith specimen is nfji. The data {σfj (Ψ0) [1 – Rj (Ψ0)], nfji}
are ranked for each value of j, where j varies from 1 to q and i
varies from 1 to p. For the ith specimen of rank r, Pfji = (r 2 0.3)/
(p + 0.4). With this subscript notation, equation (51) becomes
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Equation (52) represents the transformation of the maximum
principal stress σfj at nfji to the inert stress σ1ji,0 at n = 0.
Maintaining the same risk of rupture for the specimen uniaxial
Weibull model and the uniaxial Weibull model results in

  

Pfji
fji

Bwv ov
Qv

fj
Qv Rj

Nv Vef
Qv mv

mv Qv

n
= − −

−

−
−

−

( ) ( )[ ]






















































1
2

0 1 0
2

2

53

exp

( )

/( )

( )

σ

σ Ψ Ψ
/

a

and

n C Rfji ji fj
Qv

j

Nv= ( ) − ( )[ ]− −
σ Ψ Ψ0 01 53( )b

where

  

C
B

V

n P

ji
ov
Q

wv

ef

fji

Q m

v

v v
=

( )
















−

−

−
σ 2

1

2

l 1

/

−

( )

and

V
R

R
Vef

fj
Qv

j

Nv

fj
Qv

j

Nv

mv Qv

v
=

−[ ]
−[ ]

















−

∫
σ Ψ Ψ

σ Ψ Ψ

( ) ( )

( ) ( )

( )

1

10 0

2

d

From equations (53),
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Maintaining the same risk of rupture for the specimen uniaxial
Weibull model, all fatigue rupture data {σfj (Ψ0) [1 – Rj (Ψ0)],
nfji } are transformed to an equivalent data set {σT (Ψ0)
[1 – RT (Ψ0)], nTji} for given values of Qv and Nv:
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where σT (Ψ0) and RT (Ψ0) are the lowest values of the set of
data {σfj (Ψ0) [1 – Rj (Ψ0)]}. Substituting equation (56) into
equation (53) yields
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Parameter estimation.—The following are techniques which
may be used to determine the parameters for cyclic fatigue using
the Walker law formulation just described.

Method I–Least-squares best-fit regression plane using
median values: The inert parameters σov and mv are known.
The data median values (σfj (Ψ0) [1 – Rj (Ψ0)], nfji)0.5 are substi-
tuted into equation (54); Pfji = 0.5 and Cji is now constant; Cji,
Qv, Nv are computed via the least-squares best-fit regression
plane analysis; Vef and Bwv are then evaluated.

Method II–Least-squares best-fit regression plane using all
data: The inert parameters σov and mv are known. For each
value of j from the data, ranked in accordance with the value of
nfji, the values of Pfji associated with {σfj (Ψ0) [1 – Rj (Ψ0)], nfji}
are obtained. From a least-squares best-fit analysis of the data
applied to equation (55), Qv and Nv are computed; Vef and Bwv
are then evaluated.

Method III–Least-squares best-fit regression plane to evalu-
ate unsubscripted B: The value of B in equation (49) is not
model dependent and can be obtained using all the rupture data
(inert and subcritical crack growth). The transformed maxi-
mum principal uniaxial stress σ1ji,0 (Ψ0) in equation (52) is
taken as the inert strength distribution. The inert strength is
associated with {σfj (Ψ0) [1 – Rj (Ψ0)], nfji} by equivalence of
rank. For each j varying from 1 to q, the subscript i varies from
1 to p. There are p-specimens tested for each value of j. From
equation (52),
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The data are substituted into equation (58) to solve for Qv, Nv,
and B.

Method IV–Maximum likelihood estimation using all data:
This iterative process involves determining values Qv, Nv, and
Bwv assumed unique to the data. The inert parameters are known.
Based on LSBF results, the values Nv = Nassumed and
Qv = Qassumed are assumed. The data are transformed via
equation (56). The MLE method is applied to equation (57),
with nTji as the variate to solve for mv/(Qv–2) and then to
compute Qv. This value is then compared with the assumed
value. If Qcomputed is within a specified tolerance of Qassumed,
the solution is obtained. If not, the next value of Qv is assumed to
be the average of these two values. If no solution exists, the
process is restarted with a new value for Nassumed.

Experimental Applications

The examples in this section employ some of the equations
presented in the preceding theoretical sections. It is under-
stood in this section that failure occurs at location Ψ0, and
therefore said notation will be omitted in the subsequently
developed equations. Inert room-temperature and dynamic
fatigue fracture data are analyzed for (a) soda lime glass,
ring-on-ring square plate test specimens and (b) sintered
alpha silicon carbide (SASC) material obtained from O-ring
and C-ring specimens at 1200 and 1300 °C.

For the soda lime glass material, inert parameters are
obtained using the least-squares best-fit (LSBF) and maxi-
mum likelihood estimation (MLE) methods. Dynamic fatigue
data are then utilized in conjunction with these known inert
parameters (obtained via the LSBF and MLE methods) to
generate fatigue parameters for the soda lime glass. This
approach was used to determine fatigue parameters for the
LSBF method. The MLE method did not converge to a solu-
tion. The results of these methods are presented. Finally, the
soda lime glass dynamic fatigue data are used in conjunction
with the median deviation (MD) method to obtain the cumu-
lative distribution curve defined by the Weibull parameter
ms, the fatigue parameters Ns, and the product Bwsσ os

Ns −2.
For the sintered alpha silicon carbide material, inert pa-

rameters are obtained using the least-squares best-fit (LSBF)
and maximum likelihood estimation (MLE) methods. Dy-
namic fatigue data are then utilized in conjunction with these
known inert parameters (obtained via the LSBF and MLE
methods) to generate fatigue parameters for the SASC
material.

Simulations have shown (ref. 11) that the standard devia-
tion for the MLE method is smaller than that for the LSBF
method. However, all experimental data reflect some degree
of error (ref. 12) and flaw variability. Both methods (MLE
and LSBF) are used in the determination of the relevant
parameters.
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Soda Lime Glass

Inert data (table II) and dynamic fatigue data (table III) were
obtained from soda lime glass ring-on-ring specimens (fig. 1).
For this material, inherent surface flaws were the source of
failure (Nemeth, N.N. et al.: CARES/LIFE Ceramic Analysis
and Reliability Evaluation of Structures Life Prediction Pro-
gram. NASA Lewis Research Center, unpublished data, 1993).
The radial stress σr and tangential stress σtan on the tensile
loaded surface are equal for radius r ≤ Ri, the radius of the load
ring
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where P is the applied load, h is the specimen thickness, v is
Poisson’s ratio, and Rs is the diagonal half-length of the square
plate specimen (fig. 1). The maximum principal stress for
r ≥ Ri is the tangential stress
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Inert data analysis.—For the soda lime glass material, inert
parameters are obtained using the least-squares best-fit and maxi-
mum likelihood estimation methods.

For the least-squares best-fit method applied to the inert data,
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where Pfj is the probability of failure of the jth specimen,
obtained from the ranking of σfj; ms is the Weibull modulus; σfj
is the maximum tangential stress at failure of the jth specimen;
and σθ s is the characteristics strength. Figure 2 shows a plot of
the ring-on-ring inert data and the solution obtained using the
LSBF method.

For the maximum likelihood estimation method applied to
the inert data,
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For j varying from 1 to q (q = total number of test specimens),
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and σfj(r) = σtan(r) is the maximum principal tangential stress
distribution. Figure 3 shows a plot of the ring-on-ring inert data
and the solution obtained using the MLE method.

Dynamic fatigue data analysis.—In this section, fatigue
parameters are determined using dynamic fatigue data in con-
junction with known inert parameters ms and σos (obtained via
the LSBF and MLE methods). The effective area  Aef  is assumed
constant for all specimens.

For the least-squares best-fit method applied to the dynamic
fatigue data, equation (22) is utilized for surface flaws by replac-
ing subscript v with s. After some algebraic manipulation, where
σ̇  is the independent variable, the linear regression function is
given by
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Figure 1.—Ring-on-ring loaded square plate 
   specimen. Poisson's ratio, n, 0.22; outer ring radius,
   Ro, 16.090 mm; inner ring radius, Ri, 5.015 mm; 
   diagonal half-length, Rs, 35.921 mm.
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where the effective area is
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Figure 4 is a plot of the ring-on-ring dynamic fatigue data; also
shown is the solution obtained using the LSBF method applied
to the median data values given in table IV. Figure 5 is a plot of
the ring-on-ring dynamic fatigue data and shows the solution,
obtained using the LSBF method, to all the dynamic fatigue data
given in table III.

If the effective area Aef is not constant (i.e., Aefji), equa-
tion (66) can be written in another form:
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Figure 3.—Ring-on-ring inert data and maximum 
   likelihood estimation line. Weibull modulus, 
   ms, 2.869; scale factor,sos, 19.20 MPa-m2/ms;
   effective area, Ae, 182.6 mm2.

–5.0

–5.2

–5.4

–5.6

–5.8

–6.0

–6.2
–2          0           2           4          6           8         10       12

All data
Median values

{ 
,
n

 [
 <

n
 (

 1
 –

 P
f 

j )
 –1

 ]
 /

 m
s }

 –
 <

n
 s

f 
j

<n sf j + { 2 <n [<n ( 1–Pf j ) 
–1 ] / ms } – <n s j

Figure 4.—Ring-on-ring dynamic fatigue data and least-
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The process for computing Ns is iterative. The value of Aefji is
assumed to be constant for all specimens (Aefji is constant). This
constant value is used to calculate a starting value for Ns (eq. (66)).
Then, this starting value of Ns and the specimen Aefji values are
used to begin the iterative process. Iteration continues until the
assumed value of Ns is equal to (or within some specified
tolerance of) the computed value of Ns.

Since σfji = σ̇ j tfji, where tfji is the time to failure of the ith

specimen under stress rate σ̇ j , another form of equation (66) for
surface flaws is
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For the maximum likelihood estimation method applied to
the dynamic fatigue data, with ms and σos known, analogous to
equations (62) and (22) is
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The value of Pfji is obtained from the ranking of the failure
stress.

The solution is obtained by assuming an appropriate range of
values for Ns based on the least-squares best-fit result. With the
value of Ns fixed, a starting value for ms is assumed equal to the
inert value. Based on this value, a computed Weibull modulus
msc is obtained. A new value of ms is assumed equal to (ms +
msc)/2, and the process is repeated until convergence. Conver-
gence is assumed to occur when the absolute value of the
difference (ms – msc) is < 0.01. The process is repeated, chang-
ing the assumed value of Ns until the computed value of msc is
equal to the known inert value. For the soda lime glass dynamic
fatigue data examined here, this convergence did not occur, as
shown in figure 6. The inert value of the Weibull modulus
obtained via the maximum likelihood method is 2.869. At the
start, for a fixed value of Ns = 4 and an assumed ms = 2.675,
convergence occurred after six iterations to msc = 0.856. In most
cases, convergence occurred after two iterations. For Ns varying
from 4 to 44, the largest value of msc obtained was 2.570. The
computed modulus did not converge to the inert value of the
Weibull modulus, 2.869.

The value of Bus for the ring-on-ring square plate test
specimen is obtained via the specimen uniaxial Weibull model
and least-squares best-fit method. The stress transformation
equation is
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Thus, the probability of failure is expressed as
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Figure 6.—Fatigue parameter determination for soda lime
   glass data via maximum likelihood estimation method. 
   No convergence. Weibull modulus, ms, 2.869; scale 
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becomes the basis for a least-squares best-fit evaluation. Equat-
ing the risk of rupture of the specimen uniaxial Weibull model to
that of the uniaxial Weibull model yields the relationship
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For large values of Ns, Aef  tends toward Ae and Bus tends toward
Bws.

For the median deviation method applied to the soda lime
glass dynamic fatigue data, it is assumed that no inert data are
available. From equation (26) (for surface flaws replace sub-
script v with s), the value of Ns = 13.1 produces the minimum
value MDmin. Figure 7 shows the variation of the MD value as
a function of the assumed value of Ns. For assumed values of Ns
that are less than 10.0 and greater than 13.1, the MD value
continuously increases. A plot of the distribution solution
versus the experimental fatigue data is given in figure 8.

Sintered Alpha Silicon Carbide (SASC)

Inert data (table V) and dynamic fatigue data (table VI) were
obtained from sintered alpha silicon carbide O-ring and C-ring
specimens tested at temperatures of 1200 and 1300 °C. Schematic

diagrams of the specimens, including nominal dimensions, are
in figure 9. The SASC dynamic fatigue data are the mean values
based on at least seven specimens. They are assumed herein to
be the median values. For this material, inherent volume flaws
were the source of failure (refs. 4 and 5).

Inert data analysis.—For the sintered alpha silicon carbide
material, inert parameters are obtained using the least-squares
best-fit and maximum likelihood estimation methods. Fig-
ures 10 to 13 show plots of the SASC O-ring and C-ring inert
data and the solutions obtained using the least-squares best-fit
method. Figures 14 to 17 show plots of the SASC O-ring and
C-ring inert data and the solutions obtained using the maxi-
mum likelihood estimation method.
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Figure 7.—Median deviation sum (MD) as function of
   assumed exponential fatigue parameter Ns. Solution is
   Weibull modulus, ms, 2.33; fatigue parameter, Ns, 13.1. 

 Ns+1
,n     sf j i      /sj  

.

5.0         5.5         6.0         6.5         7.0        7.5         8.0

 2    

0

–2

–4

–6

,n
 [,

n 
( 1

 –
 P

f 
j i

 )–
1 ]

Figure 8.—Median deviation distribution for fatigue
   parameter, Ns, 13.1; Weibull modulus, ms, 2.33;
   Z, 1083.8 (MPaNs-sec)1/(Ns–2). The terms Pf j i and
   Z are defined in equation (70). 

1/(Ns–2) 



19

Dynamic fatigue data analysis.—Table VI contains median
values of SASC O-ring and C-ring dynamic fatigue test data at
1200 and 1300 °C and at three stress rates. The least-squares
best-fit method is applied to the dynamic fatigue data by using
the inert parameters obtained via the MLE method. Figures 18
and 19 show plots of the O-ring and C-ring dynamic fatigue
data and the solutions obtained using the least-squares best-fit

Ro

Ri

O-ring in diametral compression

Ro

Ri

C-ring in compression

Ro

Ri

Figure 9.—O-ring and C-ring test specimen configuration
   and nominal dimensions. Outer radius, Ro, 22.2 mm;
   inner radius, Ri, 17.6 mm; width, 4.6 mm.

ALPHA SILICON CARBIDE O-RING
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Figure 10.—Least-squares best fit to 1200 °C SASC   
   O-ring inert data. Weibull modulus, mv, 12.51; scale
   factor, sov, 65.98 MPa-m3/mv; effective volume, 
   Ve, 6.32 mm3.
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Figure 11.—Least-squares best fit to 1300 °C SASC
   O-ring inert data. Weibull modulus, mv, 9.66; scale
   factor, sov, 41.59 MPa-m3/mv; effective volume,
   Ve 7.07 mm3. 
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Figure 12.—Least-squares best fit to 1200 °C SASC C-ring
   inert data. Weibull modulus, mv, 9.63; scale factor, sov,
   43.89 MPa-m3/mv; effective volume, Ve, 39.20 mm3.
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Figure 13.—Least-squares best fit to 1300 °C SASC C-ring
   inert data. Weibull modulus, mv, 6.56; scale factor, sov,
   20.91 MPa-m3/mv; effective volume, Ve, 58.00 mm3.
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Figure 14.—Maximum likelihood estimation fit to 1200 °C
   SASC O-ring inert data. Weibull modulus, mv, 10.68;
   scale factor, sov, 51.02 MPa-m3/mv; effective volume,
   Ve, 6.32 mm3.
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Figure 15.—Maximum likelihood estimation fit to 1300 °C
   SASC O-ring inert data. Weibull modulus, mv, 10.01;
   scale factor, sov, 44.49 MPa-m3/mv; effective volume,
   Ve, 7.07 mm3

5.10     5.20     5.30     5.40     5.50     5.60    5.70    5.80    

2

1

0

–1

–2

–3

–4

,n sf j

,n
 { 

,n
 [ 

1/
(1

 –
 P

f 
j )

 ] 
}

Figure 17.—Maximum likelihood estimation fit to 1300 °C
   SASC C-ring inert data. Weibull modulus, mv, 7.04; 
   scale factor, sov, 24.82 MPa-m3/mv; effective volume, 
   Ve, 58.00 mm3.
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Figure 16.—Maximum likelihood estimation fit to 1200 °C
   SASC C-ring inert data. Weibull modulus, mv, 9.46;
   scale factor, sov, 42.52 MPa-m3/mv; effective volume,
   Ve, 39.20 mm3.
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method based on equation (66). The slope of the line is given by
1/Nv. For median values, the formulation generally used is
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Cji  is a constant since Pfji  = 0.5 for the median values.
The general equation (66) was used to compute the fatigue
parameters.
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the two-parameter Weibull distribution is assumed adequate
and the effect of the shear stress distribution in the flexure test
bar is assumed negligible. With the many apparent uncertain-
ties, both methods (MLE and LSBF) are presumed acceptable.

For time-dependent reliability analysis, the material fatigue
parameters, in addition to the inert Weibull parameters, must be
evaluated. In the examples presented, dynamic fatigue data are
utilized in conjunction with known inert parameters
(obtained via the LSBF and/or MLE methods) to generate
material fatigue parameters for the soda lime glass and SASC.
Both examples included illustrate the successful use of the
LSBF method to determine the fatigue parameters. However,
the MLE method applied to the dynamic fatigue soda lime glass
data from ring-on-ring specimens did not converge to a solu-
tion. A third approach, the median deviation method (MD), was
also successfully used in conjunction with the dynamic fatigue
data to obtain the cumulative distribution curve for the soda
lime glass.

A comparison of results obtained for different models
(Weibull and Batdorf) is given. Different models resulted in
different equations for the effective area and fatigue param-
eters. The median deviation method was applied to the dynamic
fatigue data to obtain a qualitative estimate of the Weibull
modulus, exponential fatigue parameter, and the product
parameter. Although these results are sufficient to define the
probability distribution function of the test data, the individual
values (scale factor and fatigue constant) comprising the prod-
uct parameter are necessary for life prediction.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, September 7, 1995

Table VII contains a summary of the inert and fatigue
parameters from the analysis of the soda lime glass data.
Table VIII contains a summary of the inert and fatigue param-
eters from the analysis of the sintered alpha silicon carbide data.

The theoretical development and experimental applications
presented indicate that the general equation (66) or (73) should
be applied to obtain the fatigue parameters when all the speci-
men rupture data are used. For the median values, equation (66)
was used in preference to equation (74).

Conclusions

A reliability analysis of monolithic structural ceramics
depends on material inert and fatigue parameters obtained from
fast-fracture and time-dependent stress rupture data. Integrated
design computer programs such as CARES/LIFE (Ceramics
Analysis and Reliability Evaluation of Structures LIFE Predic-
tion Program) use analytical methods such as those presented
in this report to estimate material parameters and subsequently
determine the time-dependent reliability of complex structural
ceramic components.

For fast-fracture reliability analysis, specimen rupture data
are utilized to determine the inert material Weibull parameters.
In the examples presented, the least-squares best-fit (LSBF)
and maximum likelihood estimation (MLE) methods were
applied to obtain the material inert parameters for soda lime
glass ring-on-ring and sintered alpha silicon carbide O-ring and
C-ring specimens. Simulations have shown that the standard
deviation for the MLE method is smaller than that for the LSBF
method. The direct relationship of the standard deviation to the
preciseness of the value calculated suggests that the MLE
method is preferred. However, all experimental data reflect
some degree of error as well as flaw variability. Furthermore,

σov,
MPa-m3/mv
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Material parameters (inert and fatigue) are obtained from naturally flawed specimens. If the inert strength parameters
characterizing the two-parameter Weibull cumulative distribution function are known, the fatigue parameters for the
power, Paris, and Walker subcritical crack growth equations can be obtained from the appropriate rupture data of
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included.


